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Abstract: Co-occurrence of beta amyloid (Aβ) and white matter hyperintensities (WMHs) increase
the risk of dementia and both are considered biomarkers of preclinical dementia. Moderation
and mediation modeling were used to define the interplay between global and regional Aβ and
WMHs measures in relation to executive function (EF) and memory composite scores outcomes at
baseline and after approximately 2 years across a sample of 714 clinically normal participants from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI 2). The moderation regression analysis
showed additive effects of Aβ and WMHs over baseline memory and EF scores (p = 0.401 and 0.061,
respectively) and synergistic effects over follow-up EF (p < 0.05). Through mediation analysis, the
data presented demonstrate that WMHs effects, mediated by global and regional amyloid burden,
are responsible for baseline cognitive performance deficits in memory and EF. These findings suggest
that Aβ and WMHs contribute to baseline cognition independently while WMHs volumes exert
effects on baseline cognitive performance directly and through influences on Aβ accumulation.

Keywords: white matter hyperintensities (WMH); regional standardized uptake value ratio (SUVr);
executive function; neuroimaging; preclinical Alzheimer’s disease; cognitive function; neuroimaging

1. Introduction

Alzheimer’s disease (AD) and subcortical vascular dementia are considered the most
common pathologic contributors to dementia in the aging population. Both frequently
coexist in over 80% of community dwelling adults with dementia [1]. Cerebral small vessel
disease (CSVD) has also been linked to the pathogenesis of AD and is largely responsible
for the development of subcortical vascular dementia [2]. AD and CSVD share multiple
risk factors [3], occurring concomitantly in over 50% of individuals with dementia [4],
and there may be substantial overlap between these two conditions in terms of clinical,
pathological and radiological findings. Co-occurrence of beta amyloid (Aβ) (a hallmark
pathologic feature of AD) and white matter hyperintensities (WMHs) (reflecting CSVD
burden) increase the risk of dementia [5].

WMHs and Aβ are also key drivers of cognitive decline in healthy older adults,
and both are considered biomarkers of preclinical dementia [6,7]. Neuroimaging studies
examining the combined impact of Aβ burden and WMHs on cognition have largely
examined these variables independently rather than examining the potential interplay
between these key pathologic hallmarks of dementia. Several studies have addressed
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this issue of interplay between Aβ and WMHs with often contradictory results [6–14].
Notably, many of these studies focused on global measures of WMHs and Aβ without
exploration of regional effects in relation to stage of disease. Studying the effect of Aβ and
WMHs on cognition without emphasizing the importance of lesion location can miss the
functional consequences of the two pathologies. Previous studies investigating the impact
of regional distribution of WMHs on executive function (EF) found that WMHs in all cortical
regions (frontal areas, occipital, parietal and temporal) are associated with deficits in EF
scores [15–17], but regional quantification of Aβ and its interaction with WMH volume has
not been fully investigated in these prior studies.

Aβ deposition is hypothesized as being the initial step in the neuropathological
development of AD and dementia [18], but findings from previous studies have also
shown that WMHs often occur prior to the presence of amyloid-β plaques in preclinical
AD [19–21] supporting a retrograde degeneration hypothesis [22,23]. Additionally, evidence
from recent studies has suggested that the relationship between WMHs and Aβ is strongly
determined by the spatial distribution of the two pathologies [24]. The majority of published
studies have emphasized the spatial heterogeneity of WMHs [25,26], but have left the
potential heterogeneous influences of regional Aβ deposition relatively unexplored.

Since mixed dementia is widely recognized as the norm rather than the exception,
in the present study we sought to explore the relation between regional and global Aβ

and WMHs with cognitive function (EF and memory) scores in cognitively normal (CN)
older adults at baseline, and further examine the relation between WMHs and regional Aβ

deposition in relation to cognitive performance changes over time.

2. Materials and Methods

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public–private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers and clinical
and neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD).

2.1. Participants

Summary data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI 2) at
http://adni.loni.usc.edu (accessed on 24 July 2021) [27] were used in the present analyses.
Only participants with a mini-mental state examination (MMSE) score greater than or
equal to 26 at baseline meeting these inclusion criteria were included in the analysis:
(1) complete demographic information (i.e., age, sex, education) and ApoE genotype
available; (2) neurocognitive composite metrics for EF and memory at baseline and after
approximately 2 years, (3) PET Florbetapir for focal and global Aβ quantification; and
(4) T2 FLAIR scan acquisition with WMHs volume quantification. Details of ADNI inclusion
criteria, clinical procedures and methodology are available elsewhere [28,29]. These criteria
were developed to specifically investigate predisease and preclinical disease states that
may lead to further cognitive impairment and dementia.

Participants with missing data required for the analyses were excluded. A total of
53 participants were excluded from the longitudinal analysis on the basis of missing data
required for the analysis. Excluded participants did not differ significantly from these
included in the analysis in regards to age, sex, education, ApoE or baseline MMSE scores
(data not shown).

2.2. Imaging Analysis
2.2.1. White Matter Hyperintensity Quantification Method

WMH volumes were quantified using the 4-tissue segmentation method described
previously [30]. Briefly, first step was co-registration of the FLAIR to the 3D T1 image
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inhomogeneity-corrected and non-linearly aligned to a minimal deformation template
(MDT) using the T1 transformation and the FMRIB Software Library (FSL) toolbox [31,32].
Modified Bayesian probability and structure prior probability maps were used to estimate
WMH in the MDT. Binary WMHs masks were then created using 3.5 SD threshold above
the mean. The segmented WMHs masks were then back-transformed into native space
for tissue WMH volumes calculation. An Expectation–Maximization (EM) algorithm was
used for segmentation to isolate gray, white, and CSF measurements in template-space.
Transforming these masks back to each image’s native space produced rough estimate
3-tissue segmentations. Finally, WMHs were ultimately subtracted from segmented white
matter volume and reported in cubic millimeters.

2.2.2. Calculation of Florbetapir Cortical Summary Values

Preprocessing of the AV-45 PET scans and computation of the global AV-45 PET values
were done centrally by the ADNI core as described previously [33]. Briefly, each subject’s
florbetapir image was coregistered using SPM8 to that subject’s MRI image that was
closest in time to the florbetapir scan. Freesurfer processing was carried out to skull-strip,
segment and delineate cortical and subcortical regions in all MRI scans [34,35]. Volume-
weighted florbetapir means from a cortical summary region were extracted. A single
binary cortical summary region composed of all the subregions was created to calculate the
mean uptake across each region. We used the summary data of global and regional results
(frontal, parietal and cingulate regions that have been most frequently associated with EF
performance [36–39]). SUVr determination was based on the whole cerebellum reference
region. Details regarding regions of interest forming the subregions frontal, parietal and
cingulate have been described previously [33].

2.3. Composite Measures of Executive Function and Memory: ADNI_EF and ADNI_Memory

The specific tests included in ADNI executive function (ADNI-EF) composite scores
are Category Fluency (animal and vegetable naming), Trail Making Tests A and B, Digit
Span backwards, Wechsler adult intelligence scale-revised (WAIS-R) Digit Symbol Substitu-
tion and 5 Clock Drawing items (circle, symbol, numbers, hands, time) [40]. The memory
composite (ADNI_Memory) included the Rey auditory verbal learning test (RAVLT), the
cognitive component of the Alzheimer’s disease assessment scale (ADAS-Cog) and Wech-
sler logical memory scale scores [40]. We used the ADNI-EF and ADNI-Memory scores
corresponding to the baseline scan and EF and memory scores within one to three years
from the baseline as follow-up scores.

2.4. Statistical Analyses

All statistical analyses were conducted using SPSS, version 26.0 (SPSS Inc., Chicago,
IL, USA). Significance was set at p < 0.05, with correction based on the number of the
analysis. We used multiple regression models including the interaction term and the main
effects of Aβ and WMHs to investigate the independent and combined associations of
these pathologies with cognition (ADNI-EF and ADNI-Memory). WMH volumes were
logarithmically transformed due to the positive skewed distribution for the statistical
analysis. Moderation analyses assessing the relationship between Aβ and WMHs were fit
to the data using the following equation:

Ŷ = b0 + b1WMHs + b2 Aβ + b3WMH*Aβ +bX

where Ŷ represents the mean scores of composite measures of cognitive (executive or
memory) function and bX represents beta coefficients and adjustment covariates. Age
(continuous values), sex (indicator variable), education (continuous values), ApoE (dummy
indicator variable) and total intracranial volumes (continuous values) were entered as
covariates in all analyses. The models were built using Hayes’ PROCESS macro for SPSS
(model 1) [41]. Longitudinal analyses examined the association of the interaction between
baseline Aβ burden and WMHs with mean follow-up cognitive (ADNI-EF or ADNI-
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Memory) scores after controlling for baseline ADNI cognitive scores and time following
the baseline scan acquisitions and cognitive testing. To consider the regional Aβ burden
effects in addition to global Aβ burden and WMHs on baseline and change in ADNI-EF
and ADNI-Memory, moderated regressions were run for amyloid deposition (SUVr) in
each of the a priori selected cortical regions (Frontal, cingulate and parietal), adjusting for
age, sex, education, ApoE and intracranial volumes.

Assuming that WMH is causally related to Aβ deposition, which is in turn causally
related to cognitive (ADNI-EF or ADNI-Memory) scores, mediation models were built to
estimate the relationship between WMH (independent variable) and cognitive function
(dependent variable) and Aβ (mediator variable). This model was built using Hayes’ PRO-
CESS macro for SPSS (model 4) [41]. Significance was tested using 5000 bootstrap samples
to calculate bias-corrected 95% confidence intervals. Indirect effects with bootstrapped 95%
confidence intervals not crossing zero were considered significant. Age, sex, education,
ApoE and intracranial volumes were entered as covariates in the mediation regression
models. Baseline ADNI composite scores and times between the two cognitive scores
tests were added as covariates in the mediation regression models examining longitudinal
cognitive score changes.

3. Results

The demographic, clinical and imaging characteristics of the included participants are
provided in Table 1. Briefly, the sample included 326 women and 388 men with a mean age
of 73.13 ± 7.4 years; participants were highly educated on average (16.3 ± 2.6 years).

Table 1. Characteristics of participants.

Characteristic Range Mean (SD) Sample Size

Age (years) 55–96 73.13 (7.41) 714

Education (years) 10–20 16.31 (2.6) 714

Global Aβ burden (SUVr) 0.84–2.01 1.19 (0.22) 714

Frontal Aβ burden (SUVr) 0.83–2.01 1.19 (0.23) 714

Cingulate Aβ burden (SUVr) 0.89–2.36 1.29 (0.22) 714

Parietal Aβ burden (SUVr) 0.87–2.08 1.20 (0.22) 714

WMH volumes in cubic centimeters 0.07–61.02 6.94 (8.54) 714

WMH volumes (log-transformed) −1.13 to 1.79 0.57 (0.52) 714

Total intracranial volumes 1084.29 to 1861.82 411.88 (135.97) 714

ADNI-EF (baseline) −3.01 to 2.99 0.54 (0.94) 714

ADNI-EF (follow-up) −3.01 to 2.99 0.50 (1.06) 661

ADNI-memory (baseline) −2.8 to 3.14 0.56 (0.81) 714

ADNI-memory (follow-up) −2.62 to 3.06 0.52 (0.94) 661

Time between test (years) 1 to 3 1.86 (0.49) 661

APOE e4 allele N(%) copy 1 2 to 4 58 (8.1) 714

APOE e4 allele N(%) copy 2 3 to 4 300 (42.1) 714

Sex male N (%) 388 (54.3) 714
Key: Aβ, Beta Amyloid; WMH, White Matter Hyperintensity; ADNI-EF, Executive Function; SD, Standard
Deviation; SUVr, Standardized Uptake Value Ratio.

3.1. Testing the Interaction Term and the Main Effect of Global and Regional Aβ Burden and
WMHs with Cognition

The moderation regression analysis detected a marginally statistically significant inter-
action effect between Aβ burden and WMHs in relation to baseline EF (p-value = 0.061),
and a significant interaction term between the biomarkers in relation to longitudinal ex-
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ecutive functions with p-value = 0.036. Overall, when amyloid burden was higher, the
association between log WMHs and ADNI-EF was stronger. (+1 SD above sample mean)
(Figure 1A). Regarding memory composite scores, the models did not detect any statis-
tically significant interaction effect between global Aβ burden and WMHs in relation to
baseline ADNI-memory scores or follow-up ADNI-memory scores (p-Value 0.401 and
0.937 respectively).

Figure 1. Longitudinal EF performance at low (−1 SD), moderate mean (0 SD) and high (1 SD) levels
of baseline global and regional Aβ burden and WMHs.

The regional models examining the interaction between Aβ burden in discrete cortical
regions and WMH volumes detected marginally significant interaction between frontal,
parietal and cingulate Aβ burden and WMHs in relation to baseline EF performance with
p-value 0.061, 0.059 and 0.071, respectively. In contrast, the models failed to detect even
marginally significant interaction effects between regional Aβ burden and WMHs with
baseline memory (p-values for interaction term were in frontal Aβ 0.360, parietal Aβ 0.353
and cingulate Aβ 0.411).

The moderation analysis detected a significant interaction effect of frontal and cingu-
late Aβ burden and WMHs on longitudinal EF performance with p value 0.033 for frontal
and 0.024 for cingulate (Figure 1B,C). The (regression) slopes illustrating the negative
association of WMH volume with longitudinal executive function performance for three
levels of regional Aβ burden and WMHs (−1, 0 and 1 SD using sample’s mean) are shown
in Figure 1. In contrast to the results for EF, the moderation regression analysis failed to
detect a statistically significant interaction effect between regional Aβ burden and WMH
in relation to follow-up ADNI-memory scores. Results regarding the moderation models
between global and regional Aβ burden and WMHs with baseline and follow-up cognitive
(ADNI-EF and ADNI-Mem) scores are displayed in Supplementary tables.

The (regression) slopes representing WMH’s negative associations with executive
functions for high levels of regional Aβ burden (+1 SD using sample’s mean). Figure 1A
showed the interaction term of global Aβ burden and WMHs with Follow-up ADNI-EF
scores. Overall, when amyloid burden was higher, the association between log WMH and
ADNI-EF was stronger. (+1SD above sample mean). Figure 1B showed the interaction term
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of frontal Aβ burden and WMHs with Follow-up ADNI-EF scores. Figure 1C showed the
interaction term of baseline cingulate Aβ burden and WMHs with Follow-up ADNI-EF
scores. Figure 1D showed the interaction term of baseline parietal Aβ burden and WMHs
with Follow-up ADNI-EF scores.

3.2. Testing the Mediation Effects of Global and Regional Aβ Burden on WMH-Related
Cognitive Performance

Mediation analyses were conducted to assess whether global and regional Aβ burdens
act as potential mediators of the relationship between WMHs and cognitive performance.
Path models of the mediation effect are presented in Table 2. The path analysis revealed
that global Aβ deposition mediates the relationship between WMHs and baseline cognitive
(EF and memory) scores (see Figure 2A,B). The bootstrap confidence interval (CI) for the
indirect effect demonstrated that the indirect effect of WMH on baseline EF performance
(a × b = −0.045; CI: −0.09, −0.01) and baseline memory scores (CI: −0.01, −0.006) through
global Aβ burden were significant. Both frontal and parietal Aβ SUVr mediated the effect
of WMH on baseline EF and memory performance. In contrast, there was no significant
mediation effect by cingulate Aβ SUVr for baseline cognitive performance (see Table 2 and
Supplementary Materials figures). The other model explored whether global and regional
Aβ SUVr mediated the relationship between WMHs and follow-up cognitive (EF and
memory) scores after adding baseline cognitive scores and times since the initial cognitive
test as the covariates. Results demonstrated that neither global Aβ SUVr (see Figure 2C,D)
nor regional Aβ SUVr mediates these associations as the CI for the indirect effect was
crossing the zero and did not reach statistical significance. While our path analyses were
conducted to assess whether global and regional Aβ burden act as potential mediators of
the relationship between WMHs and ADNI-memory scores, we tested its opposite direction,
and no significant mediating effects were detected for baseline or follow-up ADNI-memory
scores. (See Supplementary Materials figures)

Table 2. The mediation effects of global and regional Aβ burden on WMH-related
cognitive performance.

Path (a)
Coefficient β

(p-Value)

Path (b)
Coefficient
β (p-Value)

Direct Effect of WMH
Path (c’)

Coefficient β (p-Value)

Total Effect Path (c)
Coefficient β

(p-Value)

CI for
Indirect EffectCognitive

Function Aβ Burden

Baseline EF

Global Aβ SUVr 0.039 (0.018) −1.152
(<0.001) −0.195 (0.004) −0.239 (0.001) −0.09 and −0.01

Frontal Aβ SUVr 0.037 (0.032) −1.093
(<0.001) −0.199 (0.003) −0.239 (0.001) −0.008 and −0.005

Cingulate Aβ SUVr 0.031 (0.085) −0.979
(<0.001) −0.216 (0.002) −0.239 (0.001) −0.057 and 0.02

Parietal Aβ SUVr 0.052 (0.007) −1.114
(<0.001) −0.182 (0.007) −0.239 (0.001) −0.11 and −0.02

Baseline
memory

Global Aβ SUVr 0.039 (0.018) −1.253
(<0.001) −0.073 (0.209) −0.119 (0.047) −0.01 and −0.006

Frontal Aβ SUVr 0.037 (0.033) −1.148
(<0.001) −0.077 (0.178) −0.119 (0.047) −0.11 and −0.01

Cingulate Aβ SUVr 0.03 (0.085) −1.013
(0.001) −0.089 (0.121) −0.119 (0.047) −0.07 and 0.004

Parietal Aβ SUVr 0.052 (0.002) −1.174
(<0.001) −0.059 (0.302) −0.119 (0.047) −0.11 and −0.02
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Table 2. Cont.

Path (a)
Coefficient β

(p-Value)

Path (b)
Coefficient
β (p-Value)

Direct Effect of WMH
Path (c’)

Coefficient β (p-Value)

Total Effect Path (c)
Coefficient β

(p-Value)

CI for
Indirect EffectCognitive

Function Aβ Burden

Follow-up
EF scores

Global Aβ SUVr 0.02 (0.24) −0.744
(<0.001) −0.099 (0.072) −0.113 (0.044) −0.045 and 0.009

Frontal Aβ SUVr 0.018 (0.314) −0.689
(<0.001) −0.102 (0.061) −0.113 (0.044) −0.045 and 0.009

Cingulate Aβ SUVr 0.016 (0.385) −0.685
(<0.001) −0.101 (0.065) −0.113 (0.044) −0.04 and 0.014

Parietal Aβ SUVr 0.029 (0.088) −0.717
(<0.001) −0.092 (0.093) −0.113 (0.044) −0.05 and 0.01

Follow-up
memory

scores

Global Aβ SUVr 0.028 (0.084) −0.441
(<0.001) −0.113 (0.003) −0.125 (0.001) −0.031 and 0.002

Frontal Aβ SUVr 0.026 (0.127) −0.418
(<0.001) −0.114 (0.004) −0.125 (0.001) −0.028 and 0.04

Cingulate Aβ SUVr 0.021 (0.238) −0.373
(<0.001) −0.117 (0.002) −0.125 (0.001) −0.024 and 0.05

Parietal Aβ SUVr 0.039 (0.019) −0.408
(<0.001) −0.109 (0.004) −0.125 (0.001) −0.035 and 0.002

Path (a) expresses the change in Aβ SUVr with one unit increase in WMH, whereas path (b) expressed decrement
of cognitive function associated with an increment of Aβ SUVr. Path (c’) shows the direct effect of WMH on
cognitive function and path (c) shows the total effect. Indirect effects with bootstrapped 95% confidence intervals
not crossing zero were considered significant (bold in the table).

As such, path (a) expresses one unit increase in WMH associated with increase of
Aβ SUVr, whereas path (b) expresses the change in cognitive function (EF and memory)
associated with an increment of Aβ SUVr. Path (c’) shows the direct effect of WMHs
on cognitive function scores and path (c) shows the total effect. The bootstrap confi-
dence interval (CI) for the indirect effect demonstrated that the indirect effect of WMH
on baseline EF performance (a × b = −0.045; CI: −0.09, −0.01) (Figure 2A) and baseline
memory scores (CI: −0.01, −0.006) (Figure 2B) through global Aβ burden were significant.
In contrast, the CI for the indirect mediation effects of WMHs on follow-up EF scores
((a × b = −0.015; CI: −0.045, 0.009) (Figure 2C)) and follow-up ADNI-memory scores
((CI: −0.031, 0.002) (Figure 2D)) through global Aβ SUVr were crossing zero. (WMH,
white matter hyperintensities; SUVr, standard uptake value ratio; Aβ, beta amyloid; CI,
confidence intervals).

3.3. Testing the Relation between WMHs and Global and Regional Aβ SUVr

Bivariate plots were used to show the association between regional and global Aβ

burden, and WMH volumes. (See Figure 3)
Figure 3: The correlation between regional and global Aβ burden, and WMH volumes.
The scatterplots show the relation between Aβ burden and WMH volumes. In

Figure 3A, the Pearson correlation between global Aβ and WMH volumes was 0.162.
Figure 3B, the Pearson correlation between frontal Aβ and WMH volumes was 0.155. In
Figure 3C, the Pearson correlation between cingulate Aβ and WMH volumes was 0.130.
Finally, in Figure 3D the Pearson correlation between parietal Aβ and WMH volumes
was 0.177.
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4. Discussion

The present results indicate that there is an independent effect of both Aβ and WMHs
on cognitive performance at baseline and a synergistic interaction between these baseline
biomarkers of pathology on future EF performance. This synergistic effect was not seen in
future memory performance. The other main finding, demonstrated through mediation
analysis, is that the extent of WMH-dependent changes in baseline EF was mediated by
both global and regional Aβ burdens. Thus, WMH accumulation appears to increase Aβ

deposition which in turn influences cognition longitudinally.
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The present moderation analysis provides evidence of an additive effect of WMHs and
Aβ in relation to baseline cognitive performance, which is consistent with the findings from
other cross-section biomarker studies [6,9,10,42]. The present study extends the results
from previous studies by analyzing the effect of baseline biomarkers of Aβ and WMHs
on future cognitive performance. The data demonstrate that the combined effect of Aβ

burden and WMHs on follow-up EF scores is greater than the sum of the two individual
biomarker effects supporting a hypothesis of synergistic interactions between both Aβ and
WMHs. The synergistic effect between the baseline biomarkers of pathology on follow-up
EF scores was not seen in follow-up memory scores. This finding may be related to the
population studied as ADNI participants are largely well-educated and ADNI excludes
participants with severe CSVD. One previous study showed that CN participants with low
WMH volumes underwent low to no changes in memory performance, independent of
amyloid burden [11]. Additionally, findings from another study have demonstrated that
the association between WMH volumes and both EF and memory function were significant
in demented participants, but that the relationship between memory and WMHs was
not detected in CN participants, such as those included in the present study [43]. It is
also possible that the synergistic effect seen in follow-up EF performance but not memory
performance may involve alterations in brain function and structure networks [44], WMH
burden and/or Aβ deposition that were not included in the present analysis.

The present data further demonstrate that regional Aβ burden in frontal and cingulate
regions are most related to WMHs effect on future EF change. These data suggest that this
relation might be explained by WMHs’ impacts on connectivity within the executive con-
trol, and default mode networks [44]. Indeed, the present findings support the hypothesis
that executive function performance is dependent on both intact white matter pathway
connectivity, as well as pathologic integrity of the cortical regions themselves [12,45,46]
and that there is a synergistic interaction between baseline biomarkers of pathology on lon-
gitudinal cognitive functions that is dependent on frontal–subcortical circuitry in cognitive
aging and pAD [13].

Studying the independent associations of WMHs and Aβ burden with baseline and
follow-up cognitive performance, the present data demonstrate that baseline EF perfor-
mance is explained by both global amyloid burden and WMHs, but that Aβ burden was
the only predictor of follow-up EF performance and baseline memory performance (See
Supplementary Tables S1 and S2). Consistent with our findings, one recent study from
the University of California, Davis Alzheimer’s Disease Research Center (UCD ADRC)
diversity cohort found that WMHs were related to baseline EF, but not longitudinal change
in EF [11]. Conversely, the same group has argued that baseline WMHs likely represent
only a small percentage of the final WMHs [47], suggesting that longitudinal EF perfor-
mance may be most related to progression of WMHs, rather than solely associated with
baseline WMHs. It is also possible that these findings are related to the population studied,
as ADNI excludes participants with severe vascular risk factors that may limit analysis of
the full impact of WMH and other cerebrovascular injury in this cohort [9,48]. It should
also be pointed out that baseline WMH was one of the predictors for follow-up memory
performance with Aβ burden. These findings emphasize the important role of WMHs
as a risk factor for future memory decline even if they may not affect baseline memory
performance at the stage of pAD [11,49].

The present data clearly demonstrate that WMHs are associated with global and
regional Aβ burden pathology, exerting an effect on baseline cognitive performance through
multiple pathways. Consistent with our findings, a recently published study based on the
C6 project in the Medical Imaging Trial Network of Canada (MITNEC-C6), which differs
from ADNI in being a WMH-enriched cohort [50] demonstrated that the relation between
global WMH and cognition was mediated by global Aβ burden and cortical atrophy. The
authors interpreted their results to suggest that Aβ burden appears to be aggravated
in participants with WMHs supporting a synergistic pathophysiological process. They
further hypothesized that the relationship between WMHs and Aβ burden may be related
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to impaired general cerebral perfusion [5,51] or to vascular pathology affecting amyloid
clearance pathways [8]. Another possible explanation presented by the authors focused on
myelin damage [52], which has been shown to promote Aβ oligomerization, eventually
contributing to amyloid deposition [53]. These potential mechanisms may help explain the
topographic patterns of regional Aβ deposition in relation to WMH effects on critical brain
networks seen in the present study. The hypothesis of a regional association between Aβ

and WMHs is supported by the present data.
One major limitation of the present study includes the possibility of selection bias as

ADNI excludes participants with significant evidence for cerebrovascular disease, which
may limit discoveries into the interactions between Aβ and WMHs that may exist in more
generalizable samples. Further studies examining the interaction between Aβ and WMHs
in participants with higher levels of CSVD including lacunes, small subcortical infarctions,
microinfarcts and microbleeds are needed to more fully investigate the associations of
Aβ with CSVD. Additionally, the sample of participants evaluated is relatively small for
moderation analyses but was restricted by the availability of extant data. Longitudinal
outcome analyses may also be limited by the relatively short follow-up period in the ADNI
2 participants studied. It is possible that a more extended follow-up period would help
to clarify further the relationships between Aβ and WMHs across progressive stages of
cognitive decline, including MCI and early dementia stages. Strengths of the present study
include the use of ADNI data allowing analysis in a large sample of relatively homogeneous
CN participants that have been classified extensively for the presence of pAD and CSVD.
An additional strength is the use of both mediation and moderation analyses in studying the
relation between cognitive function and the effects of the two primary drivers of dementia
in the population (Aβ and WMHs) within discrete brain regions.

5. Conclusions

While to what extent WMHs affect Aβ burden and cognition remain unclear, the
present data demonstrate that baseline Aβ burden and WMH volumes have both indepen-
dent associations with EF and memory scores at baseline, as well as synergistic associations
with future EF performance. The extent of WMH-dependent changes in baseline cognitive
performance was related to both the direct effect of WMHs and an indirect effect moderated
through global and regional Aβ burdens. The biological relationships between regional Aβ

and WMHs responsible for this indirect effect need further investigation across a broader
profile of the disease course of dementia.
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tion effect of WMHs between global and regional Aβ burden and baseline ADNI-memory scores;
Figure S2: Path models of the mediation effect of baseline WMH volumes on follow-up ADNI-
memory performance; Table S1: The interaction between global and regional Aβ burden and WMHs
on cross-section and longitudinal performance in EF; Table S2: The interaction term and the main
effect of global and regional Aβ burden and WMHs with memory score.
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//adni.loni.usc.edu/data-samples/access-data/ Institutional Data Access / Ethics Committee (con-
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